Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(3): e4008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613198

RESUMO

Temporal phases of wound healing and their corresponding healing factors are essential in wound regeneration. Mesenchymal stem cells (MSCs) accelerate wound healing via their paracrine secretions by enhancing cell migration, angiogenesis, and reducing inflammation. This study evaluated the local therapeutic effect of human umbilical cord MSCs (hUCMSCs) in the healing of cold-induced burn wounds. An in vitro wound (scratch) was developed in rat skin fibroblasts. The culture was maintained in the conditioned medium (CM) which was prepared by inducing an artificial wound in hUCMSCs in a separate experiment. Treated fibroblasts were analyzed for the gene expression profile of healing mediators involved in wound closure. Findings revealed enhanced cell migration and increased levels of healing mediators in the treated fibroblasts relative to the untreated group. Cold-induced burn wounds were developed in Wistar rats, followed by a single injection of hUCMSCs. Wound healing pattern was examined based on the healing phases: hemostasis/inflammation (Days 1, 3), cell proliferation (Day 7), and remodeling (Day 14). Findings exhibited enhanced wound closure in the treated wound. Gene expression, histological, and immunohistochemical analyses further confirmed enhanced wound regeneration after hUCMSC transplantation. Temporal gene expression profile revealed that the level of corresponding cytokines was substantially increased in the treated wound as compared with the control, indicating improvement in the processes of angiogenesis and remodeling, and a substantial reduction in inflammation. Histology revealed significant collagen formation along with regenerated skin layers and appendages, whereas immunohistochemistry exhibited increased neovascularization during remodeling. Leukocyte infiltration was also suppressed in the treated group. Overall findings demonstrate that a single dose of hUCMSCs enhances wound healing in vivo, and their secreted growth factors accelerate cell migration in vitro.


Assuntos
Queimaduras , Células-Tronco , Animais , Feminino , Humanos , Ratos , Queimaduras/terapia , Inflamação , Ratos Wistar , Cicatrização
2.
Methods Mol Biol ; 2783: 209-220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478235

RESUMO

Amniotic membrane, being part of the placenta, is discarded as medical waste after childbirth. It can be decellularized to convert it into an acellular material while retaining the extracellular matrix. Such amniotic membrane grafts support stem cell adhesion, growth, and proliferation. These properties make it a useful candidate to be used as a bio-scaffold in regenerative medicine. This chapter describes a method for the decellularization of the amniotic membrane. Furthermore, the method for seeding adipose-derived stem cells on the decellularized amniotic membrane is described.


Assuntos
Âmnio , Tecidos Suporte , Adipócitos , Matriz Extracelular/metabolismo , Células-Tronco , Engenharia Tecidual/métodos
3.
Cell Biol Int ; 48(5): 594-609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321826

RESUMO

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Engenharia Tecidual/métodos , Hidrogéis/química , Tecidos Suporte
4.
Cell Biochem Funct ; 42(2): e3946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379227

RESUMO

The underlying pathophysiology of nonhealing chronic wounds is poorly understood due to the changes occurring at the gene level and the complexity arising in their proteomic profile. Here, we elucidated the temporal and differential profile of the normal and diabetic wound-healing mediators along with their interactions and associated pathways. Skin tissues corresponding to normal and diabetic wounds were isolated at Days 0, 3, 6, and 9 representing different healing phases. Temporal gene expression was analyzed by quantitative real-time PCR. Concurrently, differential protein patterns in the wound tissues were identified by Nano LC-ESI-TOF mass spectrometry and later confirmed by Western blot analysis. Gene ontology annotation, protein-protein interaction, and protein pathway analysis were performed using DAVID, PANTHER, and STRING bioinformatics resources. Uniquely identified proteins (complement C3, amyloid beta precursor protein, and cytoplasmic linker associated protein 2) in the diabetic wound tissue implied that these proteins are involved in the pathogenesis of diabetic wound. They exhibit enhanced catalytic activity, trigger pathways linked with inflammation, and negatively regulate wound healing. However, in the normal wound tissue, axin 1, chondroitin sulfate proteoglycan 4, and sphingosine-1-phosphate receptor were identified, which are involved in proliferation, angiogenesis, and remodeling. Our findings demonstrate the correlation between elevated gene expression of tumor necrosis factor-α, interleukin (IL)-1ß, and identified mediators: aryl hydrocarbon receptor nuclear translocator, 5'-aminolevulinate synthase 2, and CXC-family, that inflicted an inflammatory response by activating downstream MAPK, JAK-STAT, and NF-κB pathways. Similarly, in normal wound tissue, the upregulated IL-4 and hepatocyte growth factor levels in conjunction with the identified proteins, serine/threonine-protein kinase mTOR and peroxisome proliferator-activated receptor gamma, played a significant role in the cellular response to platelet-derived growth factor stimulus, dermal epithelialization, and cell proliferation, processes associated with the repair mechanism. Furthermore, Western blot analysis indicated elevated levels of inflammatory markers and reduced levels of proliferative and angiogenic factors in the diabetic wound.


Assuntos
Diabetes Mellitus , Cicatrização , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteômica , Pele/patologia , Diabetes Mellitus/metabolismo
5.
J Biomed Mater Res A ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380793

RESUMO

Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-ß) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.

6.
Exp Cell Res ; 435(2): 113934, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237847

RESUMO

Myocardial infarction (MI) is one of the major cardiovascular diseases caused by diminished supply of nutrients and oxygen to the heart due to obstruction of the coronary artery. Different treatment options are available for cardiac diseases, however, they do not completely repair the damage. Therefore, reprogramming terminally differentiated fibroblasts using transcription factors is a promising strategy to differentiate them into cardiac like cells in vitro and to increase functional cardiomyocytes and reduce fibrotic scar in vivo. In this study, skin fibroblasts were selected for reprogramming because they serve as a convenient source for the autologous cell therapy. Fibroblasts were isolated from skin of rat pups, propagated, and directly reprogrammed towards cardiac lineage. For reprogramming, two different approaches were adopted, i.e., cells were transfected with: (1) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5 (GMN), and (2) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5, and iPSC factors; Oct4, Klf4, Sox2 and cMyc (GMNO). After 72 h of transfection, cells were analyzed for the expression of cardiac markers at the mRNA and protein levels. For in vivo study, rat MI models were developed by ligating the left anterior descending coronary artery and the reprogrammed cells were transplanted in the infarcted heart. qPCR results showed that the reprogrammed cells exhibited significant upregulation of cardiac genes. Immunocytochemistry analysis further confirmed cardiomyogenic differentiation of the reprogrammed cells. For the assessment of cardiac function, animals were analyzed via echocardiography after 2 and 4 weeks of cell transplantation. Echocardiographic results showed that the hearts transplanted with the reprogrammed cells improved ejection fraction, fractional shortening, left ventricular internal systolic and diastolic dimensions, and end systolic and diastolic volumes. After 4 weeks of cell transplantation, heart tissues were harvested and processed for histology. The histological analysis showed that the reprogrammed cells improved wall thickness of left ventricle and reduced fibrosis significantly as compared to the control. It is concluded from the study that novel combination of cardiac transcription factors directly reprogrammed skin fibroblasts and differentiated them into cardiomyocytes. These differentiated cells showed cardiomyogenic characters in vitro, and reduced fibrosis and improved cardiac function in vivo. Furthermore, direct reprogramming of fibroblasts transfected with cardiac transcription factors showed better regeneration of the injured myocardium and improved cardiac function as compared to the indirect approach in which combination of cardiac and iPSC factors were used. The study after further optimization could be used as a better strategy for cell-based therapeutic approaches for cardiovascular diseases.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Infarto do Miocárdio/patologia , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Fibrose , Reprogramação Celular
7.
Artigo em Inglês | MEDLINE | ID: mdl-37875715

RESUMO

Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.

8.
Cell Biochem Funct ; 41(7): 833-844, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37814478

RESUMO

Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic ß cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate ß cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of ß cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and ß cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of ßcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Naftoquinonas , Ratos , Humanos , Animais , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Insulina/metabolismo , Hipoglicemiantes/farmacologia
9.
World J Stem Cells ; 15(8): 821-841, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37700819

RESUMO

BACKGROUND: Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells in vivo. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage. AIM: To evaluate the cardiac differentiation ability of IWP-4 and its subsequent in vivo effects. METHODS: Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 µM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed via echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry. RESULTS: MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 µM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for in vivo transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group. CONCLUSION: Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted in vivo improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37755639

RESUMO

Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) have been linked to tissue regeneration both in vitro and in vivo. However, poor engraftment and low survival rate of transplanted MSCs are still a major concern. It has been found that the proliferation, survival, and migration of MSCs are all increased by hypoxic preconditioning. However, the molecular mechanism through which hypoxic preconditioning enhances these beneficial properties of MSCs remains to be fully investigated. Therefore, the present study is aimed to investigate the mechanism by which hypoxic preconditioning enhances the survival of MSCs. We used proteomic analysis to explore the molecules that may contribute to the survival and proliferation of hypoxic preconditioned (HP) MSCs. The analysis revealed a higher expression of prelamin A/C (Lmna), glutamate dehydrogenase 1(Glud1), Actin, cytoplasmic 1(Actb), Alpha-enolase (Eno1), Glucose-6-phosphate 1-dehydrogenase (G6pd), Protein disulfide-isomerase A3 (Pdia3), Malate dehydrogenase (Mdh1), Peroxiredoxin-6 (Prdx6), Superoxide dismutase (Sod1), and Annexin A2 (Anxa2) in HP-MSCs. These proteins are possibly involved in cellular survival and proliferation through various cellular pathways. This research could aid in understanding the processes involved in hypoxic preconditioning of MSCs and designing of cell-based therapeutic strategies for tissue regeneration.

11.
World J Stem Cells ; 15(7): 751-767, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545753

RESUMO

BACKGROUND: Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor. AIM: To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs). METHODS: hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry. RESULTS: Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor ß1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn. CONCLUSION: Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.

12.
Mol Biol Rep ; 50(9): 7371-7380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450078

RESUMO

BACKGROUND: Cardiovascular diseases remain a major cause of death globally. Cardiac cells once damaged, cannot resume the normal functioning of the heart. Bone marrow derived mesenchymal stem cells (BM-MSCs) have shown the potential to differentiate into cardiac cells. Epigenetic modifications determine cell identity during embryo development via regulation of tissue specific gene expression. The major epigenetic mechanisms that control cell fate and biological functions are DNA methylation and histone modifications. However, epigenetic modifiers alone are not sufficient to generate mature cardiac cells. Various small molecules such as ascorbic acid (AA) and salvianolic acid B (SA) are known for their cardiomyogenic potential. Therefore, this study is aimed to examine the synergistic effects of epigenetic modifiers, valproic acid (VPA) and 5-azacytidine (5-aza) with cardiomyogenic molecules, AA and SA in the cardiac differentiation of MSCs. METHODS AND RESULTS: BM-MSCs were isolated, propagated, characterized, and then treated with an optimized dose of VPA or 5-aza for 24 h. MSCs were maintained in a medium containing AA and SA for 21 days. All groups were assessed for the expression of cardiac genes and proteins through q-PCR and immunocytochemistry, respectively. Results show that epigenetic modifiers VPA or 5-aza in combination with AA and SA significantly upregulate the expression of cardiac genes MEF2C, Nkx2.5, cMHC, Tbx20, and GATA-4. In addition, VPA or 5-aza pretreatment along with AA and SA enhanced the expression of the cardiac proteins connexin-43, GATA-4, cTnI, and Nkx2.5. CONCLUSION: These findings suggest that epigenetic modifiers valproic acid and 5-azacytidine in combination with ascorbic acid and salvianolic acid B promote cardiac differentiation of MSCs. This pretreatment strategy can be exploited for designing future stem cell based therapeutic strategies for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Células-Tronco Mesenquimais , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Doenças Cardiovasculares/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Azacitidina/farmacologia , Azacitidina/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas
13.
Cartilage ; : 19476035231172154, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139781

RESUMO

BACKGROUND: Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an in vitro rat NPC-induced OS model. DESIGN: NPCs were isolated from rat coccygeal discs, propagated, and characterized. OS was induced by hydrogen peroxide (H2O2), which is confirmed by 2,7-dichlorofluorescein diacetate (H2DCFDA) assay. EVs were isolated from hUC-MSCs and characterized by analyzing the vesicles using fluorescence microscope, scanning electron microscope (SEM), atomic force microscope (AFM), dynamic light scattering (DLS), and Western blot (WB). The in vitro effects of EVs on migration, uptake, and survival of NPCs were determined. RESULTS: SEM and AFM topographic images revealed the size distribution of EVs. The phenotypes of isolated EVs showed that the size of EVs was 403.3 ± 85.94 nm, and the zeta potential was -0.270 ± 4.02 mV. Protein expression analysis showed that EVs were positive for CD81 and annexin V. Treatment of NPCs with EVs reduced H2O2-induced OS as evidenced by a decrease in reactive oxygen species (ROS) levels. Co-culture of NPCs with DiI-labeled EVs showed the cellular internalization of EVs. In the scratch assay, EVs significantly increased NPC proliferation and migration toward the scratched area. Quantitative polymerase chain reaction analysis showed that EVs significantly reduced the expression of OS genes. CONCLUSION: EVs protected NPCs from H2O2-induced OS by reducing intracellular ROS generation and improved NPC proliferation and migration.

14.
Curr Issues Mol Biol ; 45(5): 4100-4123, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232730

RESUMO

BACKGROUND: Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration. OBJECTIVES: The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders. METHODOLOGY: hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins. RESULTS: All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days. CONCLUSIONS: The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration.

15.
Stem Cell Rev Rep ; 19(6): 1615-1634, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074547

RESUMO

Orthopedic surgeons face a lot of difficulties in managing and repairing osteochondral defects. Damaged articular cartilage and the subchondral bone underneath are both present in osteochondral defects. The demands of the bone, cartilage, and the contact between the bone and the cartilage must be taken into consideration while repairing an osteochondral defect. Only palliative, not curative, therapeutic interventions are now available for the healing of osteochondral abnormalities. With its ability to successfully rebuild bone, cartilage, and the junction between bone and cartilage, tissue engineering has been recognized as an effective substitute. In correlation, mechanical stress and physical processes are commonly applied to the osteochondral area. Therefore, the ability of chondrocytes and osteoblasts to regenerate is influenced by bioactive molecules and the physicochemical characteristics of the surrounding matrix. The treatment of osteochondral disorders is said to benefit from the use of stem cells as an alternative intervention. In the field of tissue engineering, various approaches have been used such as the direct implantation of scaffolding materials at the site of tissue injury in patients, either alone or loaded with cells and bioactive molecules at the target site to imitate the natural extracellular matrix. Despite the extensive use and advancements of tissue-engineered biomaterials such as natural and synthetic polymer-based scaffolds, their repair capacity is limited due to challenges in combating antigenicity, designed to simulate in vivo microenvironment, and conducting mechanical or metabolic characteristics comparable to native organs/tissues. This study explores numerous osteochondral tissue engineering methodologies focusing on scaffold design, material varieties, manufacturing techniques, and functional features. This review is focused on recent breakthroughs in bioactive scaffolds that aid osteogenic and chondrogenic differentiation for bone and cartilage repair. The topic will cover fundamental anatomy, osteochondral repair methodologies and obstacles, cell selection, biochemical variables, and bioactive materials, as well as the design and manufacture of bioactive scaffolds. Additionally, we focus on the concept and construction of decellularized scaffolds, and the fabrication of dECM scaffolds in tissue engineering from various skin, bone, nerve, heart tissue, lung, liver, and kidney, and their application in osteochondral regeneration.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Medicina Regenerativa , Condrócitos
16.
Front Med (Lausanne) ; 10: 1127303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007782

RESUMO

Background: Intervertebral disc (IVD) shows aging and degenerative changes earlier than any other body connective tissue. Its repair and regeneration provide a considerable challenge in regenerative medicine due to its high degree of infrastructure and mechanical complexity. Mesenchymal stem cells, due to their tissue resurfacing potential, represent many explanatory pathways to regenerate a tissue breakdown. Methods: This study was undertaken to evaluate the co-regulation of Sox9 and TGFß1 in differentiating human umbilical cord mesenchymal stem cells (hUC-MSC) into chondrocytes. The combinatorial impact of Sox9 and TGFß1 on hUC-MSCs was examined in vitro by gene expression and immunocytochemical staining. In in vivo, an animal model of IVD degeneration was established under a fluoroscopic guided system through needle puncture of the caudal disc. Normal and transfected MSCs were transplanted. Oxidative stress, pain, and inflammatory markers were evaluated by qPCR. Disc height index (DHI), water content, and gag content were analyzed. Histological examinations were performed to evaluate the degree of regeneration. Results: hUC-MSC transfected with Sox9+TGFß1 showed a noticeable morphological appearance of a chondrocyte, and highly expressed chondrogenic markers (aggrecan, Sox9, TGFß1, TGFß2, and type II collagens) after transfection. Histological observation demonstrated that cartilage regeneration, extracellular matrix synthesis, and collagen remodeling were significant upon staining with H&E, Alcian blue, and Masson's trichrome stain on day 14. Additionally, oxidative stress, pain, and inflammatory markers were positively downregulated in the animals transplanted with Sox9 and TGFß1 transfected MSCs. Conclusion: These findings indicate that the combinatorial effect of Sox9 and TGFß1 substantially accelerates the chondrogenesis in hUC-MSCs. Cartilage regeneration and matrix synthesis were significantly enhanced. Therefore, a synergistic effect of Sox9 and TGFß1 could be an immense therapeutic combination in the tissue engineering of cartilaginous joint bio-prostheses and a novel candidate for cartilage stabilization.

17.
Mol Biol Rep ; 50(5): 4119-4131, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877347

RESUMO

BACKGROUND: With advancing age of stem cells, dysregulation of various processes at the cellular level occurs, thereby decreasing their regeneration potential. One of the changes that occurs during the aging process is the accumulation of reactive oxygen species (ROS), which accelerates the processes of cellular senescence and cell death. The aim of this study is to evaluate two antioxidant compounds; Chromotrope 2B and Sulfasalazine, for their antioxidant effects on young and old rat bone marrow mesenchymal stem cells (MSCs). METHODS AND RESULTS: Oxidative stress was induced in MSCs by 5 µM dexamethasone for 96 h and the cells were treated with Chromotrope 2B or Sulfasalazine, 50 µM each. The effects of antioxidant treatment following oxidative stress induction was evaluated by transcriptional profiling of genes involved in the oxidative stress and telomere maintenance. Expression levels of Cat, Gpx7, Sod1, Dhcr24, Idh1, and Txnrd2 were found to be increased in young MSCs (yMSCs) as a result of oxidative stress, while Duox2, Parp1, and Tert1 expression were found to be decreased as compared to the control. In old MSCs (oMSCs), the expressions of Dhcr24, Txnrd2, and Parp1 increased, while that of Duox2, Gpx7, Idh1, and Sod1 decreased following oxidative stress. In both MSC groups, Chromotrope 2B prompted decrease in the ROS generation before and after the induction of oxidative stress. In oMSCs, ROS content was significantly reduced in the Sulfasalazine treated group. CONCLUSION: Our findings suggest that both Chromotrope 2B and Sulfasalazine possess the potential to reduce the ROS content in both age groups, though the latter was found to be more potent. These compounds can be used to precondition MSCs to enhance their regenerative potential for future cell-based therapeutics.


Assuntos
Antioxidantes , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfassalazina/farmacologia , Sulfassalazina/metabolismo , Superóxido Dismutase-1/metabolismo , Medula Óssea/metabolismo , Oxidases Duais , Estresse Oxidativo , Células-Tronco Mesenquimais/metabolismo , Tiorredoxina Redutase 2/metabolismo
18.
J Pak Med Assoc ; 73(Suppl 1)(2): S3-S8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36788384

RESUMO

Objectives: To determine the effect of the pre-treatment of mesenchymal stem cells (MSCs) with minocycline on the expression of antioxidant genes and cardiac repair post myocardial infarction (MI) in rats. METHODS: Rat bone marrow derived MSCs were used in the study. Cytotoxicity of minocycline in MSCs was determined using JC1 assay to identify a safe drug dose for further experiments. The MSCs were pre-treated with 1.0 µM minocycline for 24 hours and then treated with hydrogen peroxide (H2O2), after that mRNA was isolated and the expression levels of antioxidant genes including peroxiredoxin, glutathione peroxidase, and superoxide dismutase were determined. Finally, minocycline pre-treated MSCs were used to treat rats induced with MI by the ligation of left anterior descending coronary artery. The cardiac function was evaluated at two and four weeks post MI using echocardiography. RESULTS: At 1.0 µM concentration, minocycline was found to be safe for MSCs and used for subsequent experiments. Minocycline pre-treatment was found to up regulate several antioxidant genes in oxidatively stressed MSCs. Furthermore, minocycline pre-treated MSCs displayed greater improvement in cardiac left ventricular function at two and four-weeks post MI as compared to untreated rats. CONCLUSIONS: Pre-treatment of MSCs with minocycline enhances the expression of antioxidant genes and promotes their capability to repair cardiac function after MI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças
19.
Cell Biochem Funct ; 41(2): 223-233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651266

RESUMO

Central nervous system anomalies give rise to neuropathological consequences with immense damage to the neuronal tissues. Cell based therapeutics have the potential to manage several neuropathologies whereby the differentiated cells are explored for neuronal regeneration. The current study analyzes the effect of a bioactive compound, alpha terpineol (AT) on the differentiation of rat bone marrow derived mesenchymal stem cells (BM-MSCs) toward neuronal lineage, and explores regulation of differentiation process through the study of Wnt pathway mediators. BM-MSCs were cultured and characterized based on their surface markers and tri-lineage differentiation. Safe dose of AT as optimized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide assay, was used for the treatment of MSCs. Treated cells were analyzed for the neuronal, astroglial and germ layer transition markers at the gene and protein levels, by quantitative polymerase chain reaction and immunocytochemistry, respectively. Temporal expression of Wnt pathway genes was assessed during the course of neuronal differentiation. AT treated group showed significant upregulation of neuron specific (NSE, MAP2, Tau, Nestin, and NefL) and astroglial (GFAP) genes with positive expression of late neuronal markers. Germ layer transition analysis showed the overexpression of ectodermal markers (NCAM, Nestin, and Pax6), whereas endodermal (AFP, MixL1, and Sox17), and mesodermal (Mesp1 and T Brachyury) markers were also found to be upregulated. Wnt signaling pathway was activated during the initial phase (30 min) of differentiation, which later was downregulated at 1, 3, and 5 h. AT efficiently induces neuronal differentiation of BM-MSCs by regulating Wnt signaling. Overexpression of both early and late neuronal markers indicate their neuro-progenitor state and thus can be utilized as a promising approach in cellular therapeutics to treat various neurodegenerative ailments. In addition, exploration of the molecular pathways may be helpful to understand the mechanism of cell-based neuronal regeneration.


Assuntos
Células-Tronco Mesenquimais , Via de Sinalização Wnt , Ratos , Animais , Nestina/metabolismo , Nestina/farmacologia , Neurônios/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea , Células Cultivadas
20.
Mol Cell Biochem ; 478(8): 1759-1770, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36566485

RESUMO

Myocardial infarction (MI) damages cardiomyocytes permanently and compromises cardiac function. Mesenchymal stem cells (MSCs) with the potential to differentiate into multiple lineages are considered as one of the best options for the treatment of MI. However, aging affects their regeneration capability. With age, reactive oxygen species (ROS) accumulate in cells ultimately causing cell death. To successfully utilize these stem cells in clinic, novel strategies to improve their functional capability should be explored. In this study, we aimed to enhance the cardiac regeneration potential of bone marrow MSCs derived from aging rats by treating them with antioxidants, rutin or quercetagetin in separate in vivo experiments. Oxidative stress was induced by treating MSCs of young and aging rats with different concentrations of H2O2 which resulted in an increase in the ROS level. MSCs were treated with rutin or quercetagetin at varying concentrations and exposed to H2O2. It was observed that both antioxidants significantly (P < 0.001) suppressed H2O2-induced intracellular ROS accumulation in a dose-dependent manner. An optimized concentration of 10 µM rutin or quercetagetin was used for the in vivo experiments. MI models were developed in aging rats by ligation of left anterior descending artery and treated MSCs were transplanted in the MI models. Echocardiography was performed after 2 and 4 weeks of cell transplantation to evaluate the functional status of the infarcted heart and histological analysis was performed after 4 weeks to assess cardiac regeneration. Significant improvement was observed in cardiac parameters including LVEF% (P < 0.001), LVFS% (P < 0.01 and P < 0.001), LVIDd (P < 0.01 and P < 0.001), LVIDs (P < 0.001), LVEDV (P < 0.001) and LVESV (P < 0.001) in the treated young as well as aging MSCs. It is concluded from these findings that rutin and quercetagetin treatment enhance the regeneration efficiency of young and aging MSCs in vivo. These antioxidants can be effectively utilized to improve cellular therapy for myocardial infarction by suppressing ROS production.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Medula Óssea/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Transplante de Células-Tronco Mesenquimais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...